The Erwin Schrr Odinger International Institute for Mathematical Physics Strong Clustering in Type Iii Entropic K-systems Strong Clustering in Type Iii Entropic K-systems
نویسندگان
چکیده
It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.
منابع مشابه
Strong Clustering in Type Iii Entropic K-systems
It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.
متن کاملThe Erwin Schrr Odinger International Institute for Mathematical Physics on the Lieb{thirring Estimates for the Pauli Operator on the Lieb-thirring Estimates for the Pauli Operator
We establish Lieb-Thirring type estimates for the sums P k j k j of the negative eigenvalues k of the two-dimensionalPauli operator with a non-homogeneous magnetic eld perturbed by a decreasing electric potential.
متن کاملESI The Erwin Schr
It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.
متن کاملThe Erwin Schrr Odinger International Institute for Mathematical Physics Rayleigh{type Isoperimetric Inequality with a Homogeneous Magnetic Field Rayleigh-type Isoperimetric Inequality with a Homogeneous Magnetic Eld
We prove that the two dimensional free magnetic Schrr odinger operator, with a xed constant magnetic eld and Dirichlet boundary conditions on a planar domain with a given area, attains its smallest possible eigenvalue if the domain is a disk. We also give some rough bounds on the lowest magnetic eigenvalue of the disk. Running title: Magnetic Rayleigh-type inequality.
متن کاملThe Erwin Schrr Odinger International Institute for Mathematical Physics Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps
We consider magnetic Schrr odinger operators H(~ a) = (?ir ? ~ a(x)) 2(x) = 0g, where B is the magnetic eld associated with ~ a, and M ~ a = fx;~ a(x) = 0g, we prove that H(~ a) converges to the (Dirichlet) Laplacian on the closed set M in the strong resolvent sense, as ! 1, provided the set M n M ~ a has measure 0. Corresponding results on norm resolvent convergence are then used to show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994