The Erwin Schrr Odinger International Institute for Mathematical Physics Strong Clustering in Type Iii Entropic K-systems Strong Clustering in Type Iii Entropic K-systems

نویسندگان

  • F. Benatti
  • H. Narnhofer
چکیده

It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Clustering in Type Iii Entropic K-systems

It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics on the Lieb{thirring Estimates for the Pauli Operator on the Lieb-thirring Estimates for the Pauli Operator

We establish Lieb-Thirring type estimates for the sums P k j k j of the negative eigenvalues k of the two-dimensionalPauli operator with a non-homogeneous magnetic eld perturbed by a decreasing electric potential.

متن کامل

ESI The Erwin Schr

It is shown that automorphisms of some factors of type III , with 0 < 1, corresponding to Kolmogorov quantum dynamical systems of entropic type are strongly clustering.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Rayleigh{type Isoperimetric Inequality with a Homogeneous Magnetic Field Rayleigh-type Isoperimetric Inequality with a Homogeneous Magnetic Eld

We prove that the two dimensional free magnetic Schrr odinger operator, with a xed constant magnetic eld and Dirichlet boundary conditions on a planar domain with a given area, attains its smallest possible eigenvalue if the domain is a disk. We also give some rough bounds on the lowest magnetic eigenvalue of the disk. Running title: Magnetic Rayleigh-type inequality.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps

We consider magnetic Schrr odinger operators H(~ a) = (?ir ? ~ a(x)) 2(x) = 0g, where B is the magnetic eld associated with ~ a, and M ~ a = fx;~ a(x) = 0g, we prove that H(~ a) converges to the (Dirichlet) Laplacian on the closed set M in the strong resolvent sense, as ! 1, provided the set M n M ~ a has measure 0. Corresponding results on norm resolvent convergence are then used to show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994